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Abstract. 

Farms are not homogeneous. Smaller farms generally have different planted crops, yields, agricultural input, and irrigations 20 

compared to larger farms. Mapping farm size could facilitate studies to quantify how water availability and climate change 

affect small and large farms respectively. Given the lack of gridded farm-size specific data, this study aims to develop a global 

gridded simultaneously farm-size- and crop-specific dataset of harvested area. We achieved it by downscaling a best-available 

dataset, which collected direct measurements on crop and farm size, using crop maps, cropland extent, and dominant field size 

distributions for 2010. Uncertainties in crop maps were explicitly considered by using two crop maps separately during 25 

downscaling. Due to data availability, our downscaled maps cover 56 countries accounting for half of the global cropland. 

Based on the two different crop maps, we have one 5-arcmin gridded, simultaneously farm-size- and crop-specific dataset of 

harvested area for 11 farm sizes, 27 crops, and 2 farming systems and the other one for 11 farm sizes, 42 crops, and 4 farming 

systems. The downscaled maps show major planted crops and irrigation change along with farm sizes which support previous 

findings. Validations show well consistencies with observations on farm-size specific oil palm from satellite images, farm-size 30 

specific irrigation from household surveys, and previous studies that map farm size but are not crop-specific. We observed 

some uncertainties at the grid cell level and found conclusions at the country-level are robust to these uncertainties including 

the uncertainties from the crop maps. Our downscaled maps will help to explicitly include farm size into global agriculture 

modeling. The source data, code, and downscaled maps are open-access and free available at 

https://doi.org/10.5281/zenodo.5747616 (Su et al., 2022). 35 
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1 Introduction 

There are over 608 million farms around the world (Lowder et al., 2016; Lowder et al., 2021). Land and water resources are 

not equally distributed among these farms. More than 80% of these farms are smaller than 2 hectares and they only utilize 

around 20% of farmland area (Lowder et al., 2021; Bosc et al., 2013). The largest one percent of farms utilize 70% of global 40 

farmland area (Lowder et al., 2021). Smaller farms also limitedly apply irrigation to adapt to water scarcity in low- and middle-

income countries (Ricciardi et al., 2020). 

In addition to water and land resources, the characteristics of agricultural production are generally different across farm sizes, 

which may be country-dependent. For example, in terms of crops, smaller farms plant more fruits, pulses, and roots and tubers 

while larger farms plant more vegetables, nuts, and oilcrops (Ricciardi et al., 2018b; Herrero et al., 2017). In terms of the use 45 

of agricultural practices to increase agricultural productivity, famers that operate smaller farms tend to increase the use of non-

fixed inputs, such as fertilizers and pesticides, while larger farms tend to increase fixed inputs, such as machinery (Ren et al., 

2019). Smaller farms also have a greater biodiversity on average (Ricciardi et al., 2021; Noack et al., 2021). Though whether 

smaller farms have a higher yield has undergone a long debate, yield often correlate with farm size (see Rudra (1968); 

Savastano and Scandizzo (2017); Gollin (2019); Ricciardi et al. (2021)). 50 

These above-mentioned characteristics stimulate studies to explicitly discern small and large scale farms in agriculture studies 

and map farm sizes (Meyfroidt, 2017; Riesgo et al., 2016). At the global level, mapping farm sizes can be traced back to 

Lowder et al. (2016), Samberg et al. (2016), and Fritz et al. (2015). Lowder et al. (2016) estimated the country-level distribution 

of farm size based on multiple agricultural censuses. Samberg et al. (2016) used the Mean Agricultural Area (MAA) to assign 

each subnational administrative unit with a farm size. This may overestimate the area of small farms because not all farms are 55 

small even in the administrative unit dominated by small farms (Ricciardi et al., 2018b). Fritz et al. (2015) developed a gridded 

global dominant field size map using manually labeled field size data on the satellite images and spatial interpolation. The 

dominant field size map was updated by Lesiv et al. (2019). When interpreting fields as farms, the small farm area will also 

be overestimated as large farms can inclue small-sized fields. Herrero et al. (2017) used the country level farm size data from 

Lowder et al. (2016) and Fritz et al. (2015) to develop a dominant farm size map which was later updated by Mehrabi et al. 60 

(2020) using the field size map from Lesiv et al. (2019). Given that dominant farm size only assigns one farm size to each cell 

(usually 10 km by 10 km), dominant farm size may over/underestimate some kind of farm sizes when it is used to estimate the 

number of distribution of farm sizes. 

Previous studies’ efforts on mapping farm size are not crop-specific. One way to estimate the planted crops for different farm 

sizes is to overlap the farm size map with crop maps, e.g., Monfreda et al. (2008) in Samberg et al. (2016) and Mehrabi et al. 65 

(2020), Ray et al. (2013) in Herrero et al. (2017). Due to differences between farm size and MAA, field sizes, and dominant 

farm sizes and due to possible structural differences in crop choices between farm sizes, overlays with crop maps may lead to 

biases in the allocation of crop-specific cropping areas to farm sizes (Ricciardi et al., 2018b). 
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To avoid such biases, one way is to develop a simultaneously farm-size- and crop-specific map. Ricciardi et al. (2018b); 

Ricciardi et al. (2018a) established an empirical global database using agriculture census and household survey that directly 70 

measure crop production or area in combination with farm size. This dataset covers half of the global cropland, including data 

for 56 countries1 – with subnational data for 46 countries. Ricciardi’s dataset, however, does not have gridded maps, so it has 

limited capacities to fulfill the need of global climate change and water resources studies where the hydrological model and 

climate models commonly use grided maps as input. Lacking gridded farm-size- and crop-specific maps limits the evaluations 

on how water scarcity and climate change affect small and large farms respectively. 75 

This study aims to develop a global gridded, simultaneously farm-size- and crop-specific dataset of harvested areas with 

additional information on farming systems. Considering the data availability, the baseline year is 2010 with data covering 56 

countries. We compiled multiple datasets including cropland extent, field size distribution, and crop distribution and farming 

systems, and used them to downscale the empirical farm-size- and crop-specific datasets developed by Ricciardi et al. (2018b); 

Ricciardi et al. (2018a) from the level of administrative units into a 5 arcmin grid cell level. We also explicitly considered the 80 

uncertainties in crop distributions by using two crop maps. The resulting downscaled maps were validated with empirical data 

and compared with previous studies.  

2 Methods 

2.1 Overview 

Imagine that we know the crop area of small and large farms within an administrative unit, to downscale it, if we get a high 85 

spatial resolution map of crop area, we may have some idea on where the small and large farms may locate because some 

crops are planted more by small farms and some crop are planted more by large farms. In addition, if we get the field size 

distribution within the administrative unit, we have more ideas on where the small and large farms may locate because large 

fields only belong to large farms and small farms could only locate in small fields. When we combine the information from 

crop map and field size distribution, even though we could not precisely locate small and large farms, we could estimation 90 

their distributions in this administrative unit with some extent of uncertainties. This is how we develop the gridded, 

simultaneously farm-size- and crop-specific dataset of harvested areas. Theoretically, we could estimate multiple distributions 

of small and large farms that are consistent with all the administrative level and grid cell level data. Practically, however, these 

distributions may not exist because of the background inconsistencies among datasets. To deal with the background 

inconsistencies, we assume the best estimation of the farm-size- and crop-specific distributions are the distributions that could 95 

maximize consistencies with datasets. In any cases, we tries to find multiple distributions that meet the same level of 

consistency with datasets and averaged the multiple distributions to get the final estimation.  

 

1 In their paper, they claim to have data for 55 countries. In the dataset they published, it contains the 56th country, the Czech 

Republic. 
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Figure 1. Diagram of map development processors. 

The map development involved pre-processing of multiple datasets, establishing optimization for downscaling, and constraints 100 

relaxation and solving optimization problems (Fig. 1). The pre-processing included two parts: reclassifying crops to 

accommodate differences in crop classification used in the underlying datasets and harmonizing Ricciardi’s dataset, and 

converting the dominant field size map into a minimum field area per size and 5-arcmin grid cell (Sect. 2.2). The downscaling 

was achieved by maximizing consistencies with multiple datasets that provide information on the location of each farm size 

and planted crops. Specifically, we established an optimization for each administrative unit (Sect. 2.3) and solved it via 105 

constraints relaxations (Sect. 2.4). Priorities in achieving consistency with the various underlying datasets were considered 
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during these processes (Sect. 2.3 and 2.4). The spatial crop distribution affects both crop location and farm size location during 

downscaling and is usually uncertain. To consider the uncertainties in crop maps, we used two crop maps to develop two 

alternative versions of the final downscaled map separately. 

2.2 Datasets and pre-processing 110 

All the datasets used in this study can be found in Table 1. Ricciardi’s dataset provides the farm-size- and crop-specific 

cropping area for 56 countries at the administrative unit level. The eleven farm sizes in this dataset are based on the 

classification from the World Census of Agriculture (WCA) (Fao, 2020; Ricciardi et al., 2018a): 0–1 ha, 1–2 ha, 2–5 ha, 5–10 

ha, 10–20 ha, 20–50 ha, 50–100 ha, 100–200 ha, 200–500 ha, 500–1000 ha, and >1000 ha. The cropping area in this dataset 

means either crop area, planted area, harvested area, or cultivated area. Because the data quality varies from country to country 115 

and this dataset was not harmonized for time, we chose to downscale its crop-specific farm size structure, i.e. the crop-specific 

percentage of area per farm size, instead of the area. The crop-specific harvested area is from two crop maps separately: GAEZ 

v4 (Fischer et al., 2021) and SPAM2010 (Yu et al., 2020). They are the only two crop maps containing harvested area of tens 

crops for the year 2010 at 5 arcmin spatial resolution (Kim et al., 2021). GAEZ v4 and SPAM2010 and have their own crop 

classification systems ([S1, S2] for details). GAEZ v4 distinguishes two farming systems: irrigated and rainfed. SPAM2010 120 

further distinguishes rainfed into low- and high-input rainfed and subsistence rainfed. The dominant field size distribution 

(Lesiv et al., 2019) indicates where larger farms may locate. It provides spatial distribution for five field sizes: < 0.64 ha, 0.64–

2.56 ha, 2.56–16 ha, 16–100 ha, and >100 ha. For pre-processing, cropland extent maps were also included. 

Table 1. Datasets that were used to develop the gridded, farm-size specific, and crop-specific dataset of harvested area. 

Dataset Indicator Spatial coverage and resolution Time Crop Note 

Ricciardi et al. 

(2018b); Ricciardi 

et al. (2018a) 

Farm size 

structure* 

56 countries; (sub)national 

administrative unit 

Varies from 

2001 to 2015 

154 FAO 

crops 

11 farm sizes 

GAEZ v4 (Fischer 

et al., 2021) 

Harvested 

area 

Global; gridded, 5 arcmin 2010 27 GAEZ 

crops** 

2 farming systems 

(irrigated and rainfed) 

SPAM2010 (Yu et 

al., 2020) 

Harvested 

area 

Global; gridded, 5 arcmin 2010 42 SPAM 

crops 

4 farming systems 

(irrigated, low- and 

high-input rainfed and 

subsistence rainfed) 

Dominant field 

size distribution 

(Lesiv et al., 2019) 

Dominant 

field size 

Global; gridded, 1 km Varies from 

2000 to 2017 

Not crop-

specific 

5 field sizes 

https://doi.org/10.5194/essd-2022-72

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 7 March 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

 

GLC-Share 

(Latham et al., 

2014) 

Cropland 

extent 

Global; gridded, 30 arcsec Around 2010 Not crop-

specific 

The based map of 

GAEZ v4 

CAAS-IFPRI 

cropland extent 

map (Lu et al., 

2020) 

Cropland 

extent 

Global; gridded, 0.5 km 2010 Not crop-

specific 

The base map of 

SPAM2010 

* Here we mean the crop-specific percentage of harvested area per farm size within an administrative unit 125 

** The 27th crop is Fruits and Nuts which is not listed in the document but available in their dataset 

To pre-process Ricciardi’s dataset, we first reclassified the FAO crops in this dataset into 27 GAEZ crops and 42 SPAM crops 

respectively. Detailed criteria can be found in [S1, S2]. We used the cropping area to get the crop-specific farm size structure. 

In this dataset, the cropping area includes four items: crop area, planted area, harvested area, and cultivated area. One or two 

items are available for most countries. To harmonize data, when more than one item is available, we used the item with a larger 130 

overall area (after crop reclassification) to estimate farm size structure because larger overall area means more farm size classes 

have available data in most cases. If neither of the four items is available, we used crop production data provided by Ricciardi’s 

dataset to get the crop-specific farm size structure. In this case, we assumed constant yield across farm sizes. 

We also converted the 1 * 1 km dominant field size map into a minimum field area per size and 5-arcmin cell during pre-

processing. We interpreted dominant field size as a field of that size account for at least 50% of cropland at the cell. For each 135 

field size, we calculated the minimum field area by using the 50% of cropland extent that is dominated by the respective field 

size. We then summed and scaled the minimum field area to cover all croplands of 5-arcmin cells. To keep cropland extent 

consistent with crop map during downscaling, GLC-Share is used when crop map is GAEZ v4; CAAS-IFPRI cropland extent 

map is used when crop map is SPAM2010. The minimum field area of size 16–100 ha is 120 ha in the cell #23 means, for 

example, farms larger than 16 ha should occupy at least 120 ha in the cell #23.  140 

2.3 Optimization for downscaling 

For each administrative unit defined in Ricciardi’s dataset, we established the following optimization problem for downscaling: 

Sets: 

𝑐, Crops 

𝑓, Farm size, labelled by the lower bound of the eleven farm sizes 145 

𝑒, Field size, labelled by the lower bound of the five field sizes 

𝑠, Farming system 

𝑎, Administrative unit 

𝑔, Grid cell 
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Parameters: 150 

ℎ𝑎. 𝑅𝑐,𝑓,𝑎 , Crop-specific farm size structure, percentage of the harvested area of farm size 𝑓  that plant crop 𝑐  in the 

administrative unit 𝑎, from Ricciardi’s dataset 

ℎ𝑎. 𝑆𝑐,𝑠,𝑔, Harvested area of crop 𝑐 under farming system 𝑠 at grid cell 𝑔, from crop map 

ℎ𝑎. 𝐿𝑒,𝑔, Minimum field area of field size 𝑒 at grid cell 𝑔, from dominant field size map and crop extent map 

𝑝𝑓, The minimum farm area of farm size 𝑓 in any gird cell when the farm size 𝑓 exist; it is the lower bound of the farm size 155 

class 𝑓 

𝑙, Elastic factor 

Variables: 

ℎ𝑎𝑐,𝑓,𝑠,𝑔 Harvested area of crop 𝑐, farm size 𝑓, farming system 𝑠 at grid cell 𝑔, estimated by this study 

Objective function: 160 

Since we aim to downscale Ricciardi’s dataset, we wanted to maximize consistencies with Ricciardi’s dataset when constraints 

allow: 

 

𝑚𝑖𝑛 ∑ 𝑎𝑏𝑠 (ℎ𝑎. 𝑅𝑐,𝑓,𝑎 ∑ ℎ𝑎. 𝑆𝑐,𝑠,𝑔

𝑠,𝑔∈𝑎

− ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑠,𝑔∈𝑎

)

𝑐,𝑓

 (1) 

Constraints: 

The first constraint ensures consistencies with crop map: the total harvested per crop per farming system per grid cell in our 

map equals the harvested area per crop per farming system per grid cell in the crop map. 165 

 ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑓

= ℎ𝑎. 𝑆𝑐,𝑠,𝑔, ∀𝑐, 𝑠, 𝑔 (2) 

The second constraint ensures minimum consistencies with Ricciardi’s dataset. The relative difference in farm size structure 

between our estimation and Ricciardi’s dataset would be less than 10%. This ensures that we do not diverge far from Ricciardi’s 

dataset when other constraints are hard to meet. In this case, we would relax other constraints to ensure these minimum 

consistencies with Ricciardi’s dataset. The arbitrary 10% relative difference considers timestamp differences in Ricciardi’s 

dataset and overall uncertainties underlying each of the datasets. 170 

 90% ∗ ℎ𝑎. 𝑅𝑐,𝑓,𝑎 ∑ ℎ𝑎. 𝑆𝑐,𝑠,𝑔

𝑠,𝑔∈𝑎

≤ ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑠,𝑔∈𝑎

≤ 110% ∗ ℎ𝑎. 𝑅𝑐,𝑓,𝑎 ∑ ℎ𝑎. 𝑆𝑐,𝑠,𝑔

𝑠,𝑔∈𝑎

, ∀𝑐, 𝑓 (3) 

Thirdly, we also applied a minimum allocated area for each farm size at each grid cell. Since the farm size is defined based on 

the total operated or cultivated area that does not need to be a single crop area and single farming system, this constraint is not 

necessarily required by the definition of farm size. It is still reasonable to include it because we applied it at the 5-arcmin (~10 

km) grid cell level. Considering the uncertainties in these constraints and inconsistencies among datasets, we consider this 

constraint in a hard form and soft form. We used hard form by default. We consider relaxing these constraints using the soft 175 
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form when the optimization is infeasible (see Sect. 2.4). The soft form does not require the minimum allocation area for each 

farming system.  

Hard form 

 ℎ𝑎𝑐,𝑓,𝑠,𝑔 ≥ 𝑝𝑓 , ∀𝑐, 𝑓, 𝑠, 𝑔, 𝑖𝑓 ℎ𝑎𝑐,𝑓,𝑠,𝑔 > 0 (4) 

Soft form 

 ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑠

≥ 𝑙 × 𝑝𝑓 , ∀𝑐, 𝑓, 𝑔, 𝑖𝑓 ℎ𝑎𝑐,𝑓,𝑠,𝑔 > 0 (5) 

Fourthly, we applied a minimum area constraint for some farm sizes according to the dominant field size distribution. This 180 

constraint follows the logic that a field could only belong to an equal or larger size of farm. We assumed a linear distribution 

of area within each farm size to accommodate the different classifications of size in farms and fields.  

Given the area of field larger than 100 ha, for farms larger than 100 ha: 

 ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥100

≥ ℎ𝑎. 𝐿100,𝑔, ∀𝑔 (6) 

Given the area of field larger than 16 ha, for farms larger than 10 ha: 

 
∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥20

+
20 − 16

20 − 10
∑ ℎ𝑎𝑐,10,𝑠,𝑔

𝑐,𝑠

≥ ℎ𝑎. 𝐿100,𝑔 + ℎ𝑎. 𝐿16,𝑔, ∀𝑔 (7) 

Given the area of field larger than 2.56 ha, for farms larger than 2 ha: 185 

 
∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥5

+
5 − 2.56

5 − 2
∑ ℎ𝑎𝑐,2,𝑠,𝑔

𝑐,𝑠

≥ ℎ𝑎. 𝐿100,𝑔 + ℎ𝑎. 𝐿16,𝑔 + ℎ𝑎. 𝐿2.56,𝑔, ∀𝑔 (8) 

Given the area of field larger than 0.64 ha, for all farms: 

 
∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥1

+
1 − 0.64

1 − 0
∑ ℎ𝑎𝑐,0,𝑠,𝑔

𝑐,𝑠

≥ ℎ𝑎. 𝐿100,𝑔 + ℎ𝑎. 𝐿16,𝑔 + ℎ𝑎. 𝐿2.56,𝑔 + ℎ𝑎. 𝐿0.64,𝑔, ∀𝑔 (9) 

Last but not least, we have non-negative area constraints: 

 ℎ𝑎𝑐,𝑓,𝑠,𝑔 ≥ 0, ∀𝑐, 𝑓, 𝑠, 𝑔 (10) 

2.4 Constraints relaxation and solving procedures  

When the above optimization (Eq. (1)–(10)) is infeasible due to the inconsistencies among datasets, we first replaced the hard 

form of minimum allocated area for each farm size (Eq. (4)) with soft form (Eq. (5)) and tried the elastic factor with following 190 

values by order: 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 0. If it is still infeasible, we relaxed the minimum area constraint required 

by the dominant field size distribution by removing the constraints from large to small farms until the optimization is feasible. 

Relaxing the minimum area constraint does not happen often during downscaling. 

Whenever the above optimization becomes feasible, the optimization does not necessarily yield a unique global optimum. We 

calculated up to 80 (sub)optimal solutions with the same level of consistencies and averaged these solutions to get the final 195 
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one. This helps us to avoid potential bias of single optimal solutions. There may be still bias on the final averaged solution 

because the number and quality of solutions depend on the searching process of solving the toolbox. 

Each optimization problem was solved by Gurobi v9.1 using the dual simplex method with a time limit of 150 seconds. Gurobi 

v9.1 is a fast commercial optimization solver (Gurobi Optimization, 2021). Most of the optimization problems in this study 

could be solved within 60 seconds with the optimal solutions. For the administrative units containing more than 300 5-arcmin 200 

grid cells, the optimization problem becomes extremely large posing a great challenge for the solver. The number of decision 

variables would be more than half-million. In this case, we applied a two-tiered optimization. We first randomly divided all 

grid cells into several groups. Each group includes around 100 grid cells (for Russia, it was 200 to keep the number of groups 

below 300). We first solved the optimization problem at the group level. Then, we solved the cell-level optimization for each 

group. Of 3421 administrative units, 244 units need to be dealt with in  this way – they cover 89.4% of grid cells in this study. 205 

The whole computation was performed on a desktop computer (Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, RAM 16 GB) 

taking 9 days. 

Finally, we masked the farm size of crops as unknown if these crops are not covered by Ricciardi’s dataset. For these crops, 

the optimization could estimate their farm size components, but the uncertainties are significantly larger than those covered by 

Ricciardi’s dataset. 210 

2.5 Validation of downscaled maps and comparison with previous studies mapping farm sizes 

The ideal way to validate our downscaled simultaneously farm-size- and crop-specific dataset is to compare with observations. 

However, most of the available datasets are not farm-size specific. This puts challenges to validating our downscaled maps for 

all crops and farming systems. We searched for validation datasets that are global focused, farm-size specific with additional 

information on crop or farming systems. Limited by data availability, we were able to validate our downscaled maps with two 215 

empirical datasets and we compared with previous studies to access the reliability of our downscaled maps. More validations 

are expected when more validation datasets are available. 

For the first validation with empirical datasets, we compared our downscaled map with Descals et al. (2020) on oil palm 

production. Descals et al. (2020) developed a global gridded farm-size specific oil palm map using deep learning and satellite 

images for 2019 (Fig. A1). With satellite images, they classified oil palm areas into small-scale farms and large-scale farms 220 

based on landscape features. In order to interpret this size classification, we adopted the definition of small-scale oil palm 

farms by Indonesia (the world's largest palm oil producer and exporter) and used 25 ha as the threshold for the two scales 

(Descals et al., 2020). Due to the coverage of our datasets, the validation was in five countries (Fig. A1). The crop Oil palm in 

GAEZ v4 and SPAM2010 based map was used for validation separately. We calculated the Pearson correlation coefficient 

between our downscaled map and Descals et al. (2020) at grid cell level on three spatial scales using spatial moving average, 225 

5 arcmin, 15 arcmin, and 25 arcmin. 

For the second validation with empirical datasets, we compared our downscaled maps with farm-size specific irrigation at the 

country level using the FAO RuLIS (Rural Livelihoods Information System) database (Fao, 2021). Eleven of 56 countries’ 
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micro-level household survey data around 2010 are available [S3]. Based on the household surveys, we calculated the 

percentage of the total irrigated area (irrigated area divided by cultivated area) for each farm size (classified by crop area) 230 

where at least 5 survey samples are available. We calculated the correlations between our estimations and household surveys. 

This validation considers farm-size specific farming systems, with data aggregated over crops.  

We also compared our downscaled map with previous studies, Lowder et al. (2016) and Mehrabi et al. (2020), which mapped 

the geographic distribution of farm sizes but were not crop-specific and not farm-system specific. Lowder et al. (2016) provides 

the percentage of harvested area operated by each farm size at the country level. Mehrabi’s dataset keeps the same farm size 235 

distribution as Lowder’s dataset at the country level but provides the dominant farm size per 5-arcmin grid cell. We got the 

dominant farm size from our downscaled map with the farm size that operates the largest total harvested area per grid cell for 

GAEZ based downscaled map and SPAM based downscaled map respectively. The comparison was pixel-to-pixel by counting 

the number of cells that have similar, larger, and smaller dominant farm size in our maps compared with Mehrabi’s dataset. 

Similar dominant farm size means the farm size in our downscaled map are the same or next to the farm size in Mehrabi’s 240 

dataset. 

3 Results and analysis 

3.1 The crop type and farm size 

With the crop map from GAEZ v4 (SPAM2010), we got the 5-arcmin gridded harvested area for 56 countries, 11 farm sizes, 

27 crops (42 crops for SPAM based map), and 2 farming systems (4 farming systems for SPAM based map). Overall, our 245 

results show the preference for crop groups for eleven farm sizes ([S1] for the crop group of 27 GAEZ crops). As farm size 

increases, oil crops and fodder crops become more popular; fruits and nuts, pulses, and roots and tubers become less popular 

(Fig. 2(a)). Larger farms (>20 ha) dominate the planting of fodder crops, sugar crops and oilcrops; smaller farms (< 20 ha) 

dominate the planting of vegetables, stimulates, roots and tubers, pulses, fruits and nuts and cotton (Fig. 2(b)). The SPAM 

based map shows similar results (Fig. A2 and [S2]). These results are consistent with our datasets Ricciardi et al. (2018b) and 250 

previous studies Herrero et al. (2017), which indicate that the optimization resulted in modest remaining inconsistency. 
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Figure 2. Harvested area of crop groups within each farm size (a) and harvested area of crop groups by farm size (b) according to 

GAEZ based downscaled map. 

3.2 Irrigation and farm size 255 

Overall, our results show that smaller farms irrigate a larger share of their area than larger farms (Fig. 3(a)), which support the 

findings of Ricciardi et al. (2020). For some countries, it is may not be true (Sect. 3.4 for further details). The overall higher 

irrigation of smaller farms is due to most of small farms are in the severe water scarce regions (Fig. 3(b)). Here, to get water 

scarcity information, we overlapped our downscaled map with the blue water scarcity map where water scarcity is classified 
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as four levels: low, moderate, significant, and severe water scarcity (Hoekstra et al., 2012). It remains unknown whether smaller 260 

farms adapt to water scarcity via irrigation or irrigation of smaller farms increase water scarcity (Grafton et al., 2018). 

With water scarcity, we observed higher irrigation of larger farms when water resources become scarce, which still supports 

the findings of Ricciardi et al. (2020). The irrigation increases when the level of water scarcity increases. Larger farms irrigate 

more under moderate, significant, and severe water scarcity (Fig. 3(a)). The same trend can also be found in the SPAM based 

downscaled map (Fig. A4).  265 

 

 

Figure 3. The percentage of the irrigated area by farm size under each water scarcity level (a) and levels of water scarcity within 

each farm size (b) according to GAEZ based downscaled map. 

3.3 Validated with farm-size specific oil palm from satellite images 270 

Validations with farm-size specific oil palm data show a significant positive correlation between our downscaled maps and the 

validation dataset in most countries for both small-scale and large-scale farms (Table 2). At larger spatial scales, the correlation 

becomes stronger. This means the spatial distributions of oil palm production in our downscaled maps and Descals et al. (2020) 

are similar. Still, there are some differences especially in the case of Costa Rica and the United Republic of Tanzania.  

Part of the above differences results from the inconsistencies between the crop maps we used and validation dataset. We 275 

compared all farms area between crop maps and validation dataset, i.e. the total area of small-scale and large-scale farms 

(Table 2). We noticed that if the cropland location in crop maps differs from the validation map (not significant positive 

correlation), the farm-size specific validation will be poor. This means that our estimations are limited by the accuracies of 

farm location in crop maps. The differences between validations results for the GAEZ based map and the SPAM based map 

can also be attributed to the same reason, the differences in farm location between GAEZ v4 and SPAM2010. 280 
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Table 2. Pearson correlation coefficient of the harvested area between oil palms from satellite images Descals et al. (2020) and GAEZ 

based downscaled map and SPAM based downscaled map respectively for small-scale farms, large-scale farms and all farms. Since 

all farms results do not distinguish farm size, they indicate the differences in oil palm spatial distribution between Descals et al. 

(2020) and crop map datasets (GAEZ v4 and SPAM2010). 

  Small-scale farms Large-scale farms All farms 

  
5 arcmin 

15 

arcmin 

25 

arcmin 

5 

arcmin 

15 

arcmin 

25 

arcmin 

5 

arcmin 

15 

arcmin 

25 

arcmin 

Colombia GAEZ 

based 
0.177* 0.313** 0.397** 0.112** 0.238** 0.334** 0.232** 0.374** 0.465** 

SPAM 

based 
 0.218**  0.547** 0.684**  0.385** 0.620**  0.701**  0.409** 0.652** 0.729** 

Costa 

Rica 

GAEZ 

based 
0.086 0.183** 0.215** -0.012 -0.074 

-

0.144** 
0.032 0.001 -0.043 

SPAM 

based 
 0.836** 0.944**   0.971**  0.771**  0.891** 0.925**  0.877**  0.925**  0.929**  

Brazil 

 

GAEZ 

based 
0.245** 0.396** 0.483** 0.177** 0.258** 0.271** 0.326** 0.398** 0.423** 

SPAM 

based 
0.133**  0.190**  0.248**  0.087** 0.091**  0.084**  0.148**  0.154**  0.156**  

United 

republic 

of 

Tanzania 

 

GAEZ 

based 
0.01 -0.109* 

-

0.202** 
-0.011 -0.039 -0.063 0.022 -0.115* 

-

0.218** 

SPAM 

based 
0.024   0.025  0.069    0.022  0.014  0.065  

Peru 

 

GAEZ 

based 
0.172** 0.350** 0.438** 0.024 0.139** 0.237** 0.111** 0.263** 0.363** 

SPAM 

based 
 0.367** 0.389**  0.429**  0.141**  0.216**  0.240**  0.302**  0.395**  0.436**  

* p<0.005 285 

** p<0.001 

3.4 Validated with farm-size specific irrigation from household surveys 

Our results also have positive correlations with household surveys in farm-size specific irrigation for the GAEZ based map 

(Fig. 4(a)) and the SPAM based map (Fig. 4(b)) respectively. This means that our downscaled maps are consistent with 

validation data in terms of country-level farm-size specific irrigation. Detailed results show that the maps could capture the 290 

higher percentage of irrigated areas in small or large farms in most countries along the indications of household surveys [S4].  
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From the validations, we noticed that our downscaled maps systematically underestimate the extent of the irrigated area 

compared to household survey, both for the GAEZ based map and the SPAM based map. If we compare the percentages of 

irrigated area for all farms from the datasets, we find these underestimations are still there (Fig. 4(c), (d)). This means the 

underestimation may come from the different measurements of irrigated area and cultivated area in the validation dataset and 295 

datasets of the crop map. 

 

Figure 4. Correlations on the farm-size specific irrigated area (% of total harvested area per farm size) between household survey 

and GAEZ based downscaled map (a) and SPAM based downscaled map (b) for eleven countries. The correlations on the irrigated 

area of all farms (% of the total harvested area) between household survey and GAEZ v4 (c) and SPAM2010 (d) are also provided.  300 
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3.5 Compared with previous studies mapping farm sizes 

Compared with Lowder’s dataset (Lowder et al., 2016), we observed positive correlations for GAEZ based map (Fig. 5(a)) 

and SPAM based map (Fig. 5(b)). This means at the country level, the amount of farms for each farm size is similar to Lowder’s 

dataset ([S5] for details). There are still differences between our downscaled map and Lowder’s dataset. For example, Lowder’s 

dataset estimate 78.5% of harvested area is under the farm size 50–100 ha in Bulgaria while our downscaled maps give around 305 

5%. However, our downscaled maps estimate around 80% of harvested are in under the farm size 100–200 ha there while 

Lowder’s dataset gives zero. In this case, our downscaled maps are still similar to Lowder’s dataset even though it was not 

reflected in the correlations. These differences may be attributed to that Lowder’s dataset was developed for the year 2000 

which is ten years earlier than what we focused. Farm sizes may change during the ten years in some countries. 

 310 

Figure 5. Correlations on the percentage of harvested area operated by each farm size between Lowder’s dataset (Lowder et al., 

2016) and GAEZ based downscaled map (a) and SPAM based downscaled map (b) for 37 countries and 11 farm sizes. 

Compared with Mehrabi et al. (2020), the same pattern of the spatial distributions of dominant farm size could be observed in 

the Mehrabi’s dataset (Fig. 6(a)), the GAEZ downscaled map (Fig. 6(b)), and SPAM based downscaled map (Fig. 6(c)). Overall, 

for GAEZ based downscaled map, 54.2% of grid cells’ dominant farm sizes are similar to that in Mehrabi’s dataset, 27.5% are 315 

larger, and 18.3% are smaller; for SPAM based downscaled map, 52.8% are similar, 26.0% are larger, and 21.2% are smaller 

([S6] for details). These differences may be partly explained by the above comparison with Lowder’s dataset since Mehrabi’s 

dataset has the same country-level farm size distribution as Lowder’s dataset. Some differences could also be attributed to the 

comparison of dominant farm size: the dominant farm size in Mehrabi’s dataset may be the second-dominant farm size in our 

downscaled map. The comparison of dominant farm size may magnify the difference in estimating the overall farm sizes. 320 

Since Mehrabi’s dataset only include dominant farm size, it is not clear that how the difference would be estimating the overall 

farm sizes. 
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Figure 6. Dominant farm size according to Mehrabi’s dataset (Mehrabi et al., 2020) (a), GAEZ based downscaled map (b) and SPAM 

based downscaled map (c). We only show the cells from Mehrabi’s dataset where our downscaled maps have estimations. 325 
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4 Discussion 

4.1 Uncertainties  

We explicitly consider the uncertainties in crop maps by developing two separate downscaled maps based on two crop maps, 

GAEZ v4 and SPAM2010. From the results and validations, we observed some differences in the crop distribution between 

the two crop maps, especially at the grid cell level. This reflects the uncertainties in farmland location. It affects the spatial 330 

validations on farm-size specific oil palm and the dominant farm size distribution. However, these uncertainties at the grid cell 

level have a limited impact on country level results and validations which can be seen from Fig. 2–Fig. 5, Fig. A2, and Fig. 

A3.  

Uncertainty in the two crop maps is more pronounced for irrigation. From Fig. 4 and [S4] we could see the SPAM based 

downscaled map has a lower irrigation ratio than GAEZ based downscaled map. This is because SPAM2010 defines irrigation 335 

according to the actually irrigated area and GAEZ v4 defines irrigation by the area that is equipped with fully irrigation 

facilities. The lower irrigation ratio in SPAM2010 does not affect the conclusions and validations drawn from the GAEZ based 

map; for example, the finding of overall higher irrigation of smaller farms is robust under this uncertainty, and so is the 

observation on higher irrigation of larger farms under the high level of water scarcity. 

Some uncertainties are introduced by pre-processing and constraints relaxation during the solving processes. When estimating 340 

crop-specific farm size structures using Ricciardi’s datasets, around 12% of them were based on crop production instead of 

crop area. According to Ricciardi et al. (2018a), the introduced uncertainties are limited when using crop production. In terms 

of uncertainties introduced by constraints relaxation, for GAEZ (SPAM) based map, we solved 7381 (6017) optimizations. 

GAEZ v4 and SPAM2010 based downscaling solved different number of optimizations because of the different cropland 

extent which affect the number of grid cells to be allocated. Among all the optimizations, 4378 (3671) need to be relaxed using 345 

elastic factor 0.125 or smaller (Eq. (5)); 239 (203) need to be further relaxed by removing some of the minimum area constraints 

(Eq. (6) – (9)). Only the relaxation of minimum area constraint will introduce additional inconsistencies with datasets used. 

This means the constraints relaxation introduce additional uncertainties among 3% of the total calculations. In addition, we 

might allocate crop area to a farm size that is not included in Ricciardi’s dataset. This only happened when the crop and part 

of the eleven farm sizes are included in Ricciardi’s dataset but meeting the minimum area constraints requires an additional 350 

farm size for the crop. In this case, the 10% relative difference with Ricciardi’s dataset is still ensured for the available farm 

size. Only 0.1% (5.0%) of allocated area is in this case for GAEZ (SPAM) based downscaled map. 

More uncertainties in the downscaled maps may come from used datasets. Since Ricciardi’s dataset was not developed for 

2010, farm size may change a lot in some developing countries. This put some uncertainties in our results since we relied on 

it to estimate farm size structure. The uncertainties in the crop map affect how we downscaled Ricciardi’s dataset. Some crops 355 

can be found in Ricciardi’s dataset for an administrative unit but not in crop map, or vice versa. This leads to that, on the one 

hand, 23.3% (21.6%) of the crop area in Ricciardi’s dataset was not downscaled because the GAEZ v4 (SPAM2010) crop map 

indicates no crop. On the other hand,  17.8% (12.4%) of the harvested area in the GAEZ v4 (SPAM2010) crop map was not 
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allocated a farm size because Ricciardi’s dataset has no relevant records. These uncertainties may have affected the allocated 

area in the downscaled maps, but according to validations, they are not high enough to make the downscaled maps lose the 360 

utilities. High accurate crop map will reduce this part of uncertainties in the future. 

Despite the uncertainties at the grid cell level, the used datasets and the downscaled maps were found more reliable at the 

country level. For example, the two crop maps were developed by downscaling the agriculture census at the (sub)national level. 

The differences in the two crop maps result from the collected agriculture census and social-ecological factors considered 

during downscaling. They were all adjusted to the country-level data from FAOSTAT (Fao, 2019). The dominant field size 365 

distribution is also uncertain at the grid cell level which was estimated by spatial interpolating of training samples. The 

uncertainty will decrease when the focus is on the regional level (Lesiv et al., 2019). Validations also show well consistencies 

with country level observations. Therefore, future uses of our downscaled map are more confident at the country level than 

grid cell level. Using GAEZ based map and SPAM based map at the same time helps to reduce uncertainties at the grid cell 

level. 370 

4.2 Limitations 

With the ambition to map global simultaneously farm-size- and crop-specific harvested area, we were only able to cover 56 

countries due to data availability, though it is already half of the global cropland. Farm-size specific data is scarce and 

sometimes not publicly available in some countries. The datasets we used, like Ricciardi et al. (2018b) and Lesiv et al. (2019), 

are the currently best-available datasets on farm or field sizes (Kim et al., 2021). Data availability is the main obstacle to get a 375 

global map. The development of deep learning and remote sensing may help to map the global farm-size- and crop-specific 

harvested are in another way, like the farm-size specific oil palm in Descals et al. (2020). Lacking of farm size training samples 

and enormous computational requirements are the main challenges for deep learning and remote sensing. 

Our estimation are based on planted crop and harvested area, which is static for the year 2010. Farmers’ choice on crop will 

change along with climate, market, and so on. Current downscaled maps could only provide a baseline for the distributions of 380 

small and large farms. It remains challenging to describe the dynamics of harvested area under changing environment. 

The future updates of our downscaled maps rely on the updates of our datasets. Fortunately, GAEZ v4, SPAM2010, and the 

cropland extent map have regular update plans according to their document. The dominant field size distribution was also 

updated since the first publishing and may have more updates in the future. Ricciardi’s dataset may not have updated plans but 

it could be updated using the data from World Programme for the Census of Agriculture (Fao, 2020) and EUROSTAT (Eurostat, 385 

2021). 

5 Code and data availability 

The code, source data, and the simultaneously farm-size- and crop-specific harvested area, including the GAEZ based 

downscaled map and SPAM based downscaled map, are open-access, free, and available at 
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https://doi.org/10.5281/zenodo.5747616 (Su et al., 2022). The downscaled maps are available in *.csv files for each crop and 390 

farming system. Each *.csv file provides the grid cell index, administrative unit index, crop name, farm size, harvested area, 

and x and y coordinates in the projection of WGS84.  

6 Conclusions 

This study presents a 5-arcmin gridded simultaneously farm-size- and crop-specific dataset of harvested area for 56 countries. 

We downscaled the best-available datasets, Ricciardi et al. (2018b) which collected direct reports of farm size and crop area, 395 

by using the latest datasets on crop-specific land use, cropland extent, and field size distribution. We explicitly addressed the 

uncertainty in crop maps by using two crop maps separately during downscaling. The downscaled maps are well-consistent 

with observations on farm-size specific oil palm cultivation from satellite images and farm-size specific irrigation from 

household surveys. Our downscaled maps show the planted crops and irrigation differ among farm sizes which support 

previous findings. We observed uncertainties in the maps produced at the grid cell level but found country-level conclusions 400 

to be robust to grid cell level uncertainties, including the uncertainties from crop maps.  

 

Intended future updates will increase the spatial coverage. Our simultaneously farm-size- and crop-specific dataset will 

facilitate studies to explicitly incorporate farm size into global agriculture, water resources, and climate change studies. 

Appendices 405 

 

Figure A1. The global distribution of oil palms according to Descals et al. (2020) and the five countries to validate our downscaled 

maps. 
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Figure A2. Harvested area of crop groups within each farm size (a) and harvested area of crop groups by farm size (b) according to 410 
SPAM based downscaled map. 
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Figure A3. The percentage of the irrigated area by farm size under each water scarcity level (a) and levels of water scarcity within 

each farm size (b) according to SPAM based downscaled map. 
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